REVIEW: NEUROSCIENCE FOR NEUROLOGISTS Nanotechnology for neuronal ion channels
نویسندگان
چکیده
Ion channels provide the basis for the regulation of electrical excitability in the central and peripheral nervous systems. This review deals with the techniques that make the study of structure and function of single channel molecules in living cells possible. These are the patch clamp technique, which was derived from the conventional voltage clamp method and is currently being developed for automated and high throughput measurements; and fluorescence and nano-techniques, which were originally applied to non-biological surfaces and are only recently being used to study cell membranes and their proteins, especially in combination with the patch clamp technique. The characterisation of the membrane channels by techniques that resolve their morphological and physical properties and dynamics in space and time in the nano range is termed nanoscopy.
منابع مشابه
O 13: Ion Channels in Autoimmune Neurodegeneration
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system characterized by widespread inflammation, focal demyelination and a variable degree of axonal and neuronal loss. Ionic conductances regulate T cell activation as well as neuronal function and thus have been found to play a crucial role in MS pathogenesis. Since present therapeutical approaches are only parti...
متن کاملOptogenetics: Control of Brain Using Light
Neuronal cells communicate with each other by producing electrical signals or action potentials (APs). Different ion channels, including Na+, K+ and Ca2+ channels, are involved in generation of AP. Once an AP is generated in the soma, it travels down entire the axon length toward its terminal in a self-generating fashion that ultimately conveys information between neurons in the neural circuit....
متن کاملRegulation of voltage-gated ion channels by NGF and ciliary neurotrophic factor in SK-N-SH neuroblastoma cells.
Neurotrophic factors have powerful effects on neuronal differentiation and the maintenance of neuronal phenotype, but understanding of their regulation of one important aspect of neuronal function, excitability, remains limited. We have examined the regulation of voltage-gated ion channels by two unrelated neurotrophic factors, NGF and ciliary neurotrophic factor (CNTF), in the SK-N-SH neurobla...
متن کاملThe Hodgkin-Huxley heritage: from channels to circuits.
The Hodgkin-Huxley studies of the action potential, published 60 years ago, are a central pillar of modern neuroscience research, ranging from molecular investigations of the structural basis of ion channel function to the computational implications at circuit level. In this Symposium Review, we aim to demonstrate the ongoing impact of Hodgkin's and Huxley's ideas. The Hodgkin-Huxley model esta...
متن کاملHeteromeric acid-sensing ion channels (ASICs) composed of ASIC2b and ASIC1a display novel channel properties and contribute to acidosis-induced neuronal death.
Acid-sensing ion channel (ASIC) subunits associate to form homomeric or heteromeric proton-gated ion channels in neurons throughout the nervous system. The ASIC1a subunit plays an important role in establishing the kinetics of proton-gated currents in the CNS, and activation of ASIC1a homomeric channels induces neuronal death after local acidosis that accompanies cerebral ischemia. The ASIC2b s...
متن کامل